skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Kan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The ability to precisely engineerAgrobacteriumstrains is crucial for advancing their utility in plant biotechnology. We recently implemented the CRISPR RNA-guided transposase system, INTEGRATE, as an efficient tool for genetic modification inAgrobacterium. Despite its promise, the practical application of INTEGRATE inAgrobacteriumstrain engineering remains underexplored. Here, we present a standardized and optimized workflow that enables researchers to harness INTEGRATE for targeted genome modifications. By addressing common challenges, such as crRNA design, transformation efficiency, and vector eviction, this protocol expands the genetic toolkit available forAgrobacterium, facilitating both functional genomics and strain development for plant transformation. As a demonstration, we domesticatedAgrobacterium rhizogenesK599 strain by deleting the 15-kb T-DNA region from its root-inducing plasmid pRi2659 and inactivating a thymidylate synthase gene to render the strain auxotrophic for thymidine. The protocol provides detailed guidance for each step, including target site selection, crRNA spacer cloning,Agrobacteriumtransformation, screening for targeted insertion and Cre/loxP-mediated deletion, and vector removal. This resource will empower new users to perform efficient and reproducible genome engineering inAgrobacteriumusing the INTEGRATE system, paving the way for broader adoption and innovation in plant biotechnology. 
    more » « less
    Free, publicly-accessible full text available November 6, 2026
  2. Hemorrhage is one of the leading preventable causes of death associated with trauma, which is often complicated by wound infection. Current hemostatic materials are not ideal and lack antimicrobial properties needed for infection prevention. Here, we tested the feasibility for 6-chlorodopamine-functionalized gelatin (GDC) nanoparticles to function as a hemostatic powder with strong tissue adhesion and antibacterial properties. 6-Chlorodopamine contains a catechol sidechain that is further modified with an electron withdrawing chlorine atom, and provides strong tissue adhesion and antimicrobial property. These gelatin nanoparticles are not covalently crosslinked, which enablde them to rapidly transition into an adhesive film when hydrated with an aqueous solution or blood. The chlorination of catechol significantly increased structural integrity, interfacial bonding to tissue surface, and the rate of film formation. Additionally, GDC nanoparticles are noncytotoxic and nonhemolytic, and effectively killed Gram-positive (Staphylococcus epidermidis, Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. Finally, GDC nanoparticles achieved significantly faster hemostasis and reduced blood loss when compared to a commercial fibrin glue, Tisseel, in tail transection and liver hemorrhage models performed in mice. These findings highlight the potential of GDC nanoparticle as a versatile, multifunctional hemostatic agent capable of both rapid hemorrhage control and infection prevention. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  3. Free, publicly-accessible full text available October 1, 2026
  4. Chromosome architecture plays a crucial role in bacterial adaptation, yet its direct impact remains unclear. Different bacterial species and even strains within the same species exhibit diverse chromosomal configurations, including a single circular or linear chromosome, two circular chromosomes, or a circular-linear combination. To investigate how these architectures shape bacterial behavior, we generated near-isogenic strains representing each configuration inAgrobacterium tumefaciensC58, an important soil bacterium widely used for plant genetic transformation. Strains with a single-chromosome architecture, whether linear or circular, exhibited faster growth, enhanced stress tolerance, and greater interstrain competitiveness. In contrast, bipartite chromosome strains showed higher virulence gene expression and enhanced transient plant transformation efficiency, suggesting a pathogenic adaptation. Whole-transcriptome analysis revealed architecture-dependent gene expression patterns, underscoring the profound impact of chromosome organization onAgrobacteriumfitness and virulence. These findings highlight how chromosome structure influences bacterial adaptation and shapes evolutionary trajectories. 
    more » « less
    Free, publicly-accessible full text available October 3, 2026
  5. Free, publicly-accessible full text available August 1, 2026
  6. Abstract High‐precision genome editing tools, such as programmable nucleases, are poised to transform crop breeding and significantly impact fundamental plant research. Among these tools, the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 (CRISPR‐associated 9) system is a programmable, RNA‐guided nuclease that introduces targeted, site‐specific double‐stranded breaks in the target DNA loci. When these breaks are repaired, it often results in a frame‐shift mutation via short insertion/deletion (indel), leading to gene knockout. Since its first successful use in plants, CRISPR/Cas9 has been widely adopted for targeting genes of agronomic and scientific importance in multiple crops, including rice, maize, wheat, and sorghum. These cereal crops ensure global food security, provide essential nutrition, and support economic stability. Additionally, such crops support biofuel production, livestock feed, and sustainable farming practices through crop rotation. This article outlines the strategies for implementing CRISPR/Cas9 genome editing in plants, including a step‐by‐step process of guide RNA target selection, oligonucleotide design, construct development, assembly, and analysis of genome edits. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: CRISPR/Cas9 guide RNA target selection Support Protocol 1: Genomic DNA extraction in‐house protocol Basic Protocol 2: Construction of a binary plasmid vector Support Protocol 2:Agrobacteriumtransformation with a binary vector construct and stability check Support Protocol 3: Plant transformation Basic Protocol 3: Genotyping of edited events 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  7. An SHAM-containing adhesive was combined with PVDF to form a novel structural adhesive. SHAM provides interfacial bonding capability while PVDF increases cohesion through hydrogen bonding with the adhesive polymer backbone. 
    more » « less
  8. Goetz, H (Ed.)
    Agrobacterium-mediated transformation is an essential tool for functional genomics studies and crop improvements. Recently developed ternary vector systems, which consist of a T-DNA vector and a compatible virulence (vir) gene helper plasmid (ternary helper), demonstrated that including an additionalvirgene helper plasmid into disarmedAgrobacteriumstrains significantly improves T-DNA delivery efficiency, enhancing plant transformation. Here, we report the development of a new ternary helper and thymidine auxotrophicAgrobacteriumstrains to boostAgrobacterium-mediated plant transformation efficiency. AuxotrophicAgrobacteriumstrains are useful in reducingAgrobacteriumovergrowth after the co-cultivation period because they can be easily removed from the explants due to their dependence on essential nutrient supplementation. We generated thymidine auxotrophic strains from publicAgrobacteriumstrains EHA101, EHA105, EHA105D, and LBA4404. These strains exhibited thymidine-dependent growth in the bacterial medium, and transientGUSexpression assay using Arabidopsis seedlings showed that they retain similar T-DNA transfer capability as their original strains. Auxotrophic strains EHA105Thy- and LBA4404T1 were tested for maize B104 immature embryo transformation using our rapid transformation method, and both strains demonstrated comparable transformation frequencies to the control strain LBA4404Thy-. In addition, our new ternary helper pKL2299A, which carries thevirAgene from pTiBo542 in addition to othervirgene operons (virG,virB,virC,virD,virE, andvirJ), demonstrated consistently improved maize B104 immature embryo transformation frequencies compared to the original version of pKL2299 (33.3% vs 25.6%, respectively). Therefore, our improvedAgrobacteriumsystem, including auxotrophic disarmedAgrobacteriumstrains and a new ternary helper plasmid, can be useful for enhancing plant transformation and genome editing applications. 
    more » « less